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Abstract— Recent methods often introduce attention
mechanisms into the skip connections of U-shaped net-
works to capture features. However, these methods usu-
ally overlook spatial information extraction in skip con-
nections and exhibit inefficiency in capturing spatial and
channel information. This issue prompts us to reevaluate
the design of the skip-connection mechanism and propose
a new deep-learning network called the Fusing Spatial
and Channel Attention Network, abbreviated as FSCA-Net.
FSCA-Net is a novel U-shaped network architecture that
utilizes the Parallel Attention Transformer (PAT) to enhance
the extraction of spatial and channel features in the skip-
connection mechanism, further compensating for down-
sampling losses. We design the Cross-Attention Bridge
Layer (CAB) to mitigate excessive feature and resolution
loss when downsampling to the lowest level, ensuring
meaningful information fusion during upsampling at the
lowest level. Finally, we construct the Dual-Path Channel
Attention (DPCA) module to guide channel and spatial
information filtering for Transformer features, eliminating
ambiguities with decoder features and better concatenat-
ing features with semantic inconsistencies between the
Transformer and the U-Net decoder. FSCA-Net is designed
explicitly for fine-grained segmentation tasks of multiple
organs and regions. Our approach achieves over 48%
reduction in FLOPs and over 32% reduction in parame-
ters compared to the state-of-the-art method. Moreover,
FSCA-Net outperforms existing segmentation methods on
seven public datasets, demonstrating exceptional perfor-
mance. The code has been made available on GitHub:
https://github.com/Henry991115/FSCA-Net.

Index Terms— Medical image segmentation, parallel
attention transformer, dual-path channel attention,
alzheimer’s disease diagnosis.

I. INTRODUCTION

MEDICAL imaging is an essential technology for as-
sisting doctors in evaluating diseases and formulating
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treatment plans. In the field of medical image processing,
segmentation is crucial as it involves outlining areas of interest
within medical images, extracting pertinent image features,
and supplying dependable information that assists doctors in
diagnosis, decision-making, and devising treatment strategies.
Accurate segmentation from medical images poses a funda-
mental and challenging issue, offering potential advantages
for disease diagnosis and treatment planning [1]. In the field
of medical image analysis applications, including disease
diagnosis, treatment planning, and image-guided surgery, the
segmentation of human organs is considered a crucial task
[2]. Due to the significant time and labor costs involved
in manual medical imaging processes, the significance of
automatic segmentation methods is underscored for achieving
efficient and precise segmentation results [3], [4].

U-Net [5] stands out as the predominant encoder-decoder
network architecture in image processing tasks. It employs an
encoder-decoder architecture to separately fulfill the functions
of generating low-resolution features and upsampling to re-
cover features. Utilizing skip connections in U-Net helps to
recover spatial information that can be diminished through
the pooling layers. This supports the encoder-decoder U-
shaped network structure to restore comprehensive spatial
information. The skip-connection mechanism employed in U-
Net is simplistic but may present limitations. U-Net++ [6]
introduces a deeper level of connectivity by incorporating a
hierarchical connection mechanism called Nested U-Net. This
approach aims to enhance segmentation accuracy and preserve
fine-grained details through multi-scale feature fusion. Recent
research introduces UCTransNet [7], which builds on the U-
Net framework and integrates a Channel-based Cross Fusion
Transformer (CCT) within its skip connections. This CCT
mechanism enhances the integration of multi-scale contextual
information from a channel standpoint, effectively bridging
the semantic divide between features of high and low levels,
consequently elevating the performance of segmentation tasks.

In summary, the aforementioned three methods mentioned
above target the restoration of spatial information lost during
encoder downsampling in the U-shaped network. Despite
demonstrating good performance, these methods still have lim-
itations in extracting image features. Specifically, U-Net and
U-Net++ utilize a linear connection mechanism, while UC-
TransNet employs a non-linear skip connection mechanism.
Although they extract features from the channel dimension,
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reducing the semantic divide between features of high and
low levels, their capability to offset the loss of spatial infor-
mation could be much better. Driven by theoretical concerns,
a problem arises: how to efficiently extract spatial and channel
features from information at both elevated and lower levels,
thereby compensating for downsampling loss and closing the
semantic divide in encoder-decoder architecture within the U-
shaped network structure? To address this problem, we re-
evaluate the architecture of skip connection mechanisms and
introduce a deep learning network named FSCA-Net.

It is a novel U-shaped network architecture and incor-
porates the Parallel Attention Transformer (PAT), Cross-
Attention Bridge Layer (CAB), and Dual-Path Channel At-
tention (DPCA) modules. The PAT module connects U-Net
and Transformer, facilitating collaboration between these net-
works and capturing features from both channel and spatial
perspectives to achieve effective concatenation. The CAB
module is a bridging layer to compensate for the loss of low-
level features during encoder downsampling. Additionally, The
DPCA module integrates the merged features from U-Net and
Transformer alongside decoder features, tackling the semantic
discrepancies among these features and reducing the impact
of spatial information loss caused by encoder pooling layers.
The DPCA module replaces the conventional skip connections
found in traditional U-Net. The main contributions of this
paper are as follows:
• We design a novel feature extraction module, PAT. Within

the skip connection mechanism, PAT efficiently and
comprehensively extracts features by integrating both
the channel and spatial dimensions of the image. This
effectively compensates for the semantic and resolution
gaps and losses between low-level and high-level features.

• We construct a novel feature concatenation module,
DPCA, which better integrates features with semantic
inconsistencies between the Transformer and U-Net de-
coder. It guides channel and spatial information filtering
for Transformer features and eliminates the semantic
ambiguity between the Transformer and decoder features.

• This study presents a novel bridge layer for the network
named CAB. It aims to address the loss of detailed
feature information resulting from resolution reduction
via downsampling. The features processed through the
bridging layer contribute more effectively to the feature
concatenation in the decoder stage.

The structure of this study is as follows: Section II discusses
related work. The methodology of our proposed model is
detailed in Section III. Section IV delves into the specific
details of the experiments, followed by a comparison with
state-of-the-art methods. In Section IV, a series of discus-
sions regarding model training, model complexity, and clinical
applications are presented. Finally, Section V presents the
summarization of our research conclusions.

II. RELATED WORK

This section begins with an examination of commonly
used standard segmentation methods for medical images.
Subsequently, we specifically introduces the medical image

segmentation approach using U-shaped networks. Finally, we
summarize the relevant research on the skip-connection mech-
anism of U-shaped networks.

A. Medical Image Segmentation
As the field of computer vision has evolved, conventional

neural network approaches have progressively become out-
dated. These traditional neural network methods have certain
limitations, such as a limited perceptual capability for the
overall global information of the image and the increase
in model parameter count due to higher image resolution,
leading to high computational resource requirements. The
Fully Convolutional Network (FCN) [8] is introduced to
overcome these limitations. FCN eliminates constraints on
sample image size, increases applicability, reduces redun-
dant structures, and improves computational efficiency. U-
Net stands out for its exceptional performance and succinct
structure in the realm of image processing tasks. Furthermore,
several attention mechanisms have been suggested with the
objective of dampening irrelevant regions within images while
accentuating noteworthy features in specific local areas. For
instance, the Attention U-Net [9] introduces attention gate
units, enabling the network to focus on essential regions
selectively, thus improving segmentation precision. Another
example is the squeeze-and-excitation attention mechanism
[10], which excels in segmenting retinal blood vessels, a
dataset that demands precise differentiation of regions and
boundaries.

Recently, the Vision Transformer (ViT) [11] has demon-
strated cutting-edge performance in ImageNet classification
by implementing a Transformer with global self-attention on
complete images. Following the success of Transformers in
numerous computer vision domains, an innovative approach
to medical image segmentation has emerged [12]–[19]. As
a groundbreaking Transformer-based framework for medical
image processing tasks, TransUNet took the lead. Based on
the transformer architecture, there has been a proliferation of
work in medical image analysis for specific regions. Simi-
lar to RTN [20], which directly utilizes multiple layers of
transformer blocks to construct a reinforced transformer net-
work for coronary CT angiography vessel-level image quality
assessment. To overcome the scarcity of medical imaging
data, Valanarasu et al. introduced the Gated Axial Attention
model, known as Med T [21]. Leveraging the innovations
introduced by the Swin Transformer [22], SwinUnet [23]
introduces an entirely Transformer-based U-shaped design,
substituting the traditional convolutional blocks in U-Net with
Swin Transformer modules. However, these methods primarily
focus on addressing the limitations of convolutional operations
rather than the U-Net architecture itself, potentially resulting
in structural redundancy and high computational costs [24].

B. U-shaped Nets for Medical Image Segmentation
The framework of U-shaped Networks is predominantly

derived from U-Net, comprising both an encoder and decoder
structure. A key advantage of U-Net is its proficient feature
extraction across various levels and the amalgamation of
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Fig. 1. Illustration of the proposed FSCA-Net. We primarily replace the original skip connections with Parallel Attention
Transformer (PAT), use Cross-Attention Bridge Layer (CAB) at the bottommost level, and employ Dual-path Channel Attention
(DPCA) in the upsampling part.

information via skip connections. This results in remarkable
performance, particularly in tasks such as medical image
segmentation. Consequently, U-Net has emerged as an indis-
pensable asset in the realm of medical image processing tasks
and has garnered substantial success in semantic segmentation
tasks across diverse domains. As research in this field deepens,
various improved methods based on U-Net continue to emerge.

UNet++, built upon U-Net, integrates the features from
the four layers using feature concatenation, enabling the net-
work to autonomously learn weights for features at different
depths. With the introduction of attention mechanisms, many
novel models have been proposed, such as Attention U-
Net and Attention U-Net++ [25]. Attention U-Net introduces
attention gate units, while Attention U-Net++ combines the
feature pyramid structure of UNet++ with attention mech-
anisms. Attention mechanisms enable the network to focus
better on critical regions, enhancing segmentation accuracy.
Furthermore, there is a continuous influx of novel networks
combining U-Net with other architectures. For instance, Tran-
sUNet combines U-Net and Transformer, SwinUnet adopts a
purely Transformer approach inspired by the U-Net structure,
Cascaded U-Net [26] employs a cascaded strategy utilizing

multiple U-Net models, and UCTransNet operates channel-
wise cross-attention for multiscale encoder feature fusion,
achieving impressive segmentation results on the Glas [27]
and MoNuSeg [28] datasets.

C. Skip Connections in U-shaped Nets
Initially introduced in U-Net, the skip connection mecha-

nism is designed to mitigate semantic ambiguities due to scale
issues within the encoder-decoder architecture and has shown
significant effectiveness in recovering fine-grained details in
target objects [29]. With the popularity of U-Net, various
models have emerged that build upon and enhance its skip-
connection mechanism. Some notable examples include U-
Net++, U-Net 3+ [30], MultiResUNet [31], and UCTransNet.

Among the four models mentioned above, U-Net++ intro-
duces a feature pyramid structure and employs a cascading
approach to integrate features from different depths, allowing
the model to perceive the importance of features across various
layers. Utilizing full-scale skip connections and deep supervi-
sion, U-Net 3+ integrates semantic information from different
levels. MultiResUNet aims to mitigate the semantic gap in
encoder-decoder architecture by incorporating residual convo-
lutional layers into the skip connections. UCTransNet takes
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Fig. 2. The Parallel Attention Transformer (PAT) module
is composed of linearly concatenated Transformer Blocks.
The PAT consists of Layer Normalization (LN), 2D Spatial-
Channel Coordinated Attention (2D-SCCA) and Multi-Layer
Perceptron (MLP) components.

a unique approach by introducing a Transformer branch into
the U-Net architecture, replacing traditional skip-connections
with a Channel Transformer (CTrans). Leveraging the Trans-
former Layer structure from TransUNet [32], it incorporates
cross-channel attention, replacing multi-head self-attention, to
integrate multi-scale channel features within the U-Net.

In TransUNet or TransFuse [17], Transformer modules are
incorporated into the encoder or fused into two separate
branches. However, these methods have shortcomings stem-
ming from the limitations of the U-Net model, namely, skip
connections. In the work by Wang et al. [7], they point out that
there is inconsistency in the features in the encoder-decoder
structure, highlighting that, in some instances, semantic vari-
ances between the shallow encoder and decoder features could
result in a deficiency of semantic content within superficial
features, which might restrict enhancements in performance.
The conventional method of straightforward concatenation in
traditional U-Net may not effectively reconcile these semantic
disparities between encoder and decoder features under such
circumstances.

III. PROPOSED METHOD

In this section, the proposed FSCA-Net consists of Encoder,
the Bridge Layer, and Decoder. First, we illustrate the overall
process of FSCA-Net, and then explain each part of FSCA-Net
details.

A. FSCA-Net for Medical Image Segmentation
Fig. 1 illustrates the overall framework of the designed

FSCA-Net. Expanding on the Transformer Layer structure,
we integrate the Parallel Attention Transformer (PAT) module
to comprehensively extract different level features across the
images’ channel and spatial dimensions. The Dual-Path Chan-
nel Attention (DPCA) mechanism is employed to seamlessly
integrate skip-connection-generated features with those of the
decoder. This approach mitigates the semantic information loss
incurred during pooling processes and diminishes semantic

Fig. 3. 2D Spatial-Channel Coordinated Attention (2D-SCCA)
is achieved by sharing the weights of Q and K layers
between Channel Coordinated Attention (CCA) and Spatial
Coordinated Attention (SCA).

gaps within the amalgamated features. Furthermore, we cre-
ate the Cross-Attention Bridge Layer (CAB) to address the
substantial loss of spatial information resulting from multiple
downsampling operations.

The coordinated operation among the PAT, DPCA, and CAB
modules is as follows: Specifically, the PAT module, inspired
on the Transformer structure that ensures the extraction of
multi-scale features across channel and spatial dimensions.
Due to its characteristic of guiding channel information filter-
ing, the DPCA module effectively integrates the feature infor-
mation generated by the PAT module’s Transformer structure
and the decoder feature information of the U-shaped network.
The CAB module ensures the capture of high-level feature
information while also compensating for the loss of detail
information. Moreover, through DPCA, it achieves channel
dimension information filtering for deep-level features. CAB
preprocesses the features for subsequent fusion in the decoder
layers between the Transformer and U-shaped network, where
semantic ambiguity exists.

B. PAT: Parallel Attention Transformer for Encoder
Feature Transformation

We propose a Transformer-based approach called Parallel
Attention Transformer (PAT), which incorporates both channel
and spatial attention, as shown in Fig. 2. The PAT consists
of feature embedding, Layer Normalization (LN), 2D Spatial-
Channel Coordinated Attention (2D-SCCA), and Multi-Layer
Perceptron (MLP) components.

To encode the block information, we utilize feature embed-
ding. The feature embedding module is primarily responsible
for preprocessing the input features from the four skip connec-
tions layers of the encoder before entering the PAT module.
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Fig. 4. Dual-Path Channel Attention (DPCA) is mainly com-
posed of global pooling and convolutional blocks using adap-
tive convolutional kernels to better connect feature information
between encoders and decoders.

The four skip connection layers are computed as follows:

Ei ∈ R
H

2i−1 × W

2i−1 ×Ci(i = 1, 2, 3, 4), (1)

where H , W , and C correspond to the image’s height, width,
and channel count, respectively. We set C1 = 64, C2 = 128,
C3 = 256, and C4 = 512 for our specific implementation, as
this setup follows a common exponential growth pattern and is
capable of enabling the encoder to capture sufficiently diverse
features at every stage, ensuring that key information from the
input image is preserved.

First, we reshape the four-layer features into flattened 2D
block sequences of block sizes P , P

2 , P
4 , and P

8 , respectively,
where P represents the original block size. This reshaping
facilitates the integration of feature channel and spatial di-
mensions within the PAT module.

As shown in Fig. 3, we design a coordinated attention mech-
anism that enables adequate global attention and captures rich
spatial-channel feature representations. Specifically, it consists
of the Spatial Coordinated Attention (SCA) and the Channel
Coordinated Attention (CCA). SCA reduces the complexity
of self-attention to linear by incorporating pairwise attention
within a local neighborhood. Additionally, CCA efficiently
learns the interdependencies among channel feature maps. The
two attention modules are computed as follows:

{
X̂c = CCA(Qchannel,Kchannel, Vchannel),

X̂s = SCA(Qspatial,Kspatial, Vspatial),
(2){

Qshared =WqX,
Kshared =WkX,

(3)

where X̂c and X̂s are the channel and spatial attention maps,
respectively. Then CCA represents the Channel Coordinated
Attention module and SCA represents the Spatial Coordi-
nated Attention module. The CCA and SCA formulas require

their respective queries, keys, and value. Qshared, Kshared,
Vchannel, Vspatial are the matrices for shared queries, shared
keys, channel value layer, and spatial value layer, respec-
tively. Wq , Wk are learned weight matrices used to linearly
transform input features to obtain the query vector and key
vector. Furthermore, SCA and CCA share the Qshared and
Kshared to generate complementary and improved feature
representations, so Qchannel = Qshared = Qspatial and
Kchannel = Kshared = Kspatial.

The spatial attention is defined as follows:

Zs = softmax(
QsharedK̃

T
shared√

dk
) · Ṽspatial, (4)

where K̃T
shared and Ṽspatial denote projected shared keys

and projected spatial value layer, respectively, and dk is the
size of each vector. The spatial attention module projects
Kshared and Vspatial layers from the shape of HW × C to
a lower-dimensional matrix of shape p×C. Then, the spatial
attention map is computed by multiplying Qshared layer with
the transpose of the projected Kshared followed by applying
softmax to calculate the similarity between each feature
and other features. Finally, the similarity is multiplied by the
projected Vspatial layer to generate the final spatial attention
map of shape HW × C.

The channel attention is defined as follows:

Zc = Vchannel · softmax(
QT

sharedKshared√
dk

). (5)

Both attention mechanisms utilize the same Qshared and
Kshared layers. It calculates the channel attention map by mul-
tiplying the transpose of the Qshared layer with the projected
Kshared layer. The resulting similarity is obtained by applying
softmax. This similarity is then multiplied by the projected
Vchannel layer to generate the final channel attention map of
shape HW × C. Finally, the spatial and channel attention
maps obtained from their respective modules are integrated
to form a comprehensive attention map encompassing both
spatial and dimensional aspects. This combined attention map
is subsequently forwarded for additional processing within the
FSCA-Net framework.

C. DPCA: Dual-Path Channel Attention for Feature
Concatenation in Decoder

To better integrate the inconsistent semantic features be-
tween the U-Net decoder and the Transformer, we propose
a Dual-Path Channel Attention (DPCA) module. As shown in
Fig. 4, it guides the filtration of channel and spatial information
from Transformer features.

Mathematically, we analyze the inputs to the DPCA module.
We take Oi ∈ RC×H×W , where Oi is the i -th level PAT
output, and Di ∈ RC×H×W , where Di is the i -th level
decoder feature map, as the inputs of Dual-Path Channel
Attention. In the DPCA module, we first apply global average
pooling (GAP) to compress the spatial dimensions, producing
vector g(x) with its kth channel

g(x) =
1

H ×W

H∑
i=1

H∑
j=1

Xk(i, j), (6)
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Fig. 5. Cross-Attention Bridge Layer (CAB) is designed to
compensate for the loss of underlying features during down-
sampling.

where g(x) ∈ RC×1×1.
Next, we proceed with a one-dimensional convolution using

adaptive kernel sizes to facilitate cross-channel information
interaction. Unlike traditional attention mechanisms that use
fully connected layers, we replace them with 1 × 1 adaptive
convolutional layers to prevent the adverse effects of dimen-
sionality reduction on attention mechanisms themselves.This
approach not only prevents dimensionality reduction but also
effectively captures inter-channel interactions. The following
formula achieves the adaptive convolution kernel size:

k = ψ(C), (7)

ψ(C) = | log2 C
γ

+
b

γ
|, (8)

where γ = 2, b = 1, k denotes the convolution kernel size,
and C represents the channel count in the input features during
the aforementioned convolution process. We use the following
operation to generate the attention mask:

Mi = L1 · g(Oi) + L2 · g(Di), (9)

where g(Oi) and g(Di) are the vectors obtained by applying
global average pooling to Oi and Di, respectively; L1 and L2

are weight parameters set for the two paths in channel atten-
tion; the feature information from the two paths is allocated
after the Adaptive Conv1D layer, followed by the Addition
operation. Here, we set L1 = L2 = 1.

Substantially, in our case, with the given two paths, the
emphasis is on fusing the spatial and channel features from
the PAT output Oi, where the dual paths are fused after one-
dimensional convolution. The fused result is then multiplied
channel-wise with the PAT output Oi, followed by applying
the sigmoid activation function, generating the final weighted
feature map Ôi.

D. CAB: Cross-Attention Bridge Layer
In order to capture the advanced-level features and global

context of an image, U-shaped segmentation networks undergo
downsampling. However, the multiple downsampling steps
in the feature encoding phase reduce the image resolution,
leading to a loss of feature detail that cannot be compensated
for merely by increasing the number of channels. Hence, we
suggest employing the Cross Attention Bridge Layer (CAB),
depicted in Fig. 5, as the bridge layer in the encoder-decoder
framework. The feature map with the least difference in
resolution from the base layer will be inputted into DPCA

together with the base layer feature itself for channel dimen-
sion concatenation, ensuring the capture of high-level features
while compensating for the loss of detailed information. Addi-
tionally, due to the characteristics of DPCA, the CAB can filter
information on the channel for the two input feature maps.

Specifically, the E5 obtained by downsampling E4 is resized
to match the same size as E4. We use the bilinear interpolation
for upsampling to ensure a slight scale and smooth processing
of the image. The bilinear interpolation can be defined as:

f(P ) =(1− u)(1− v)f(Q11) + u(1− v)f(Q21)

+ (1− u)vf(Q12) + uvf(Q22),
(10)

where Qij(i, j = 0, 1) are the four nearest pixels of pixel P
and the coordinates of pixel p are (x, y); u and v are defined
as x−x1 = u and y−y1 = v, respectively. Next, the processed
D5 from E5 and E4 are inputted into a DPCA module,
facilitating cross-channel information interaction between the
two paths. The result is concatenated with D5, and the output
Ô5 is obtained through a convolutional layer.

IV. EXPERIMENTS

This section begins with an introduction to the seven pub-
licly available medical image datasets we utilized, along with
the application of evaluation metrics during the experimental
process. Subsequently, a detailed overview of the parameter
configurations in our experiments is provided. Following that,
we present the experimental results and visualizations related
to attention. Finally, we outline the ablation experiments
specifically designed for our model.

A. Datasets
We conduct experiments on the following seven datasets,

focusing on the segmentation processing of fine-grained details
in segmentation regions across all images. Additionally, apart
from the CPCGEA dataset and MoNuSeg dataset, the other
five datasets are multi-region segmentation datasets.

1) Synapse Multi-Organ Segmentation Dataset [33]: This
dataset is derived from the MICCAI 2015 Multi-Atlas Ab-
domen Labeling Challenge. This dataset comprises abdominal
CT scans from 30 patients, resulting in a 3D dataset. More
specifically, it includes a total of 3,779 axial contrast-enhanced
clinical CT images. Annotations for eight abdominal organs
are provided. In the experimental section, we standardize the
input images of the dataset to a resolution of 224 × 224.
After random partitioning, the training set consists of 18
cases (encompassing 2212 axial slices), while the testing set
comprises 12 cases.

2) ACDC [34]: The Automatic Cardiac Diagnosis Challenge
(ACDC) collects nuclear magnetic resonance imaging results
from different patients. Within the short-axis plane, pixel
sizes vary between 0.83 and 1.75mm2. The dataset provides
manually annotated images of three regions: the left ventricle
(LV), right ventricle (RV), and myocardium (MYO), offering
a reference standard for each patient’s images. In the experi-
mental section, we standardize the input images of the dataset
to a resolution of 224× 224. The dataset is randomly divided
into 80 training cases (consisting of 1510 axial slices) and 20
testing cases.
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3) COVID-19 Lung CT [35]: The dataset is compiled from
the Corona Initiative and Radiopaedia, and the specific labeled
images are obtained in the work by Ma et al. The dataset
includes CT scan images from 20 patients diagnosed with
the 2019 coronavirus disease. These scans were marked, seg-
mented, and confirmed by radiology experts, providing mask
images for the lungs and infected regions. The dataset includes
annotations for two regions of the lung and the infected areas.
In the experimental section, we standardize the input images
of the dataset to a resolution of 512 × 512. The dataset is
randomly divided into 16 training cases (consisting of 2837
axial slices) and 4 testing cases.

4) Hippocampus [36]: The data is sourced from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database, initiated by Michael W. Weiner, MD, in 2003. The
project aims to monitor the progression of mild cognitive
impairment and early-stage Alzheimer’s disease through
biomarkers, clinical assessments, and imaging techniques
such as MRI and PET scans. For more information, visit
www.adni-info.org.

The dataset consists of 30 brain hippocampal magnetic res-
onance imaging (MRI) scans from patients with Alzheimer’s
disease. The dataset includes original MRI images and an-
notated images for the left and right hippocampi. It specifi-
cally focuses on the hippocampal region. In the experimental
section, we standardize the input images of the dataset to a
resolution of 224×224. After random partitioning, the training
set consists of 24 cases (consisting of 568 axial slices), while
the testing set comprises 6 cases (consisting of 107 axial
slices).

5) LiTS [37]: This dataset is specifically created for the
research of automatic segmentation of the liver and its lesions
(such as liver tumors). It originates from the LiTS Challenge at
MICCAI 2017, comprising 131 training cases and 70 CT scan
images for testing. The dataset provides manually annotated
images of the liver and tumor. In the experimental section,
due to computational resource and time constraints, we select
40 cases, standardize and process all images into 224 × 224
resolution images, and randomly divide the dataset into 32
training cases (4599 axial slices) and 8 testing cases.

6) CPCGEA: This dataset contains MRI data for prostate
cancer patients, comprising two modalities: DWI and T2WI
sequences. The images suffer from poor clarity and additional
noise, possibly due to environmental conditions or image
sensor issues. Artifacts like stripes and shadows may also
be present, stemming from errors during image acquisition. It
consists of 172 cases with manually annotated prostate cancer
regions. In experiments, we standardize all images to 224×224
resolution and randomly split the dataset into 139 training
cases (832 axial slices) and 33 testing cases.

7) MoNuSeg [28]: Careful annotations were applied to
tissue images extracted from patients diagnosed with various
organ tumors across multiple hospitals, forming this dataset.
Formed through the acquisition of H&E (Hematoxylin and
Eosin) stained tissue images at a 40x magnification, this
dataset utilizes a common staining technique to enhance tissue
slice contrast, commonly employed for tumor assessment
(grading, staging, etc.). The dataset consists of 20 breast

cancer samples and 10 prostate cancer samples. After random
partitioning, 30 images are used for training, and 14 images
are used for testing.

B. Evaluation Metrics

Due to variations in patterns and specific segmentation
areas across the seven datasets, different evaluation metrics
are employed for each dataset. For the Synapse, ACDC,
COVID-19 Lung datasets, Hippocampus, and LiTS datasets,
we primarily use mean DSC (Dice Similarity Coefficient) and
mean HD95 (95th percentile of the Hausdorff distance) as
performance evaluation metrics. For the CPCGEA dataset,
which consists of single-label data, we use mean DSC, mean
HD95, mean Recall, and mean Precision to comprehensively
assess model performance. For the MoNuSeg dataset, we
utilize mean DSC and mean IoU (Intersection over Union) to
evaluate the segmentation performance of cell nuclei within
the dataset.

C. Implementation Detail

We implement our FSCA-Net model using PyTorch on an
NVIDIA 3090 GPU with 24GB of memory. To prevent over-
fitting, a series of data augmentation operations are applied
to the dataset before feeding the images into the model. Our
FSCA-Net model is trained from scratch. For the ACDC and
Synapse datasets, we set the batch size to 24 [23]. The batch
size is set to 16 in the Hippocampus dataset and the LiTS
dataset. For the CPCGEA dataset, the batch size is set to 8.
The batch size for both the COVID-19 Lung CT and MoNuSeg
datasets is established at 4 [15]. The patch size P for all
seven datasets is set to 16. We utilize the Adam optimizer for
model training, setting the learning rate to 0.001, with the loss
function throughout the training process being a combination
of cross-entropy loss and Dice loss, weighted as specified. It
can be defined as:

L(Y, P ) =1−
I∑

i=1

(λ
2 ∗

∑N
n=1 Yn,i · Pn,i∑N

n=1 Y
2
n,i +

∑N
n=1 P

2
n,i

+

N∑
n=1

Yn,ilogPn,i),

(11)

where I represents the class count and N signifies the total
voxel number; Yn,i and Pn,i are the ground truths and output
probabilities at voxel v for class i, respectively. We perform
various experiments and present the average outcomes. Sta-
tistical analyses indicate that our method notably surpasses
comparable approaches.

D. Comparison With Other Methods

We employ six state-of-the-art methods to validate the per-
formance of FSCA-Net: U-Net, Attention U-Net, TransUNet,
SwinUnet, Med T, and UCTransNet. Among them, we draw
loss maps for the training process of four datasets. In Fig. 6,
the training loss trends of all methods are illustrated across
the four datasets.
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(a) Synapse (b) ACDC

(c) COVID-19 Lung (d) Hippocampus

Fig. 6. The training loss trends the proposed method and six comparative methods on the four datasets.

TABLE I
COMPARISONS WITH STATE-OF-THE-ART MODELS ON THE SYNAPSE MULTI-ORGAN SEGMENTATION

DATASET. THE PERFORMANCES ON SEGMENTING THE EIGHT ORGANS ARE ALL REPORTED.

Method DSC↑(%, mean) HD95↓(mm, mean) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach
DSC↑(%)

U-Net 75.98 33.224 87.12 62.74 81.66 75.08 93.28 52.93 82.92 72.14
Attention U-Net 76.72 31.390 88.87 63.62 82.91 73.57 93.72 56.50 85.39 69.21

TransUNet 77.57 27.969 86.88 63.16 81.78 76.94 94.22 56.78 84.65 76.12
SwinUnet 78.46 24.607 85.17 65.73 82.17 78.67 94.00 57.00 89.03 75.90

Med T 69.92 38.901 82.32 55.84 67.46 66.94 90.85 46.97 81.47 67.48
UCTransNet 77.45 36.213 88.67 61.21 81.13 76.01 93.70 59.16 87.76 71.93

Ours 79.12 29.100 87.90 67.60 83.65 79.05 93.80 59.40 86.85 74.70

TABLE II
COMPARISONS WITH STATE-OF-THE-ART

MODELS ON THE ACDC DATASET.

Method DSC↑ HD95↓ RV Myo LV
(%, mean) (mm, mean) DSC↑(%)

U-Net 89.42 2.907 87.42 87.60 93.23
Attention U-Net 88.49 1.511 85.33 86.85 93.29

TransUNet 90.12 1.660 89.22 88.11 93.05
SwinUnet 90.03 1.968 87.96 88.20 93.93

Med T 84.96 3.430 80.63 83.80 90.46
UCTransNet 90.37 1.722 88.50 88.52 94.09

Ours 91.44 1.107 89.32 90.15 94.87

1) Experiments on the Synapse Multi-Organ Segmenta-
tion Dataset: Table I presents the results of the Synapse
dataset. SwinUnet outperforms other existing methods, but
our method achieves better segmentation performance for
the aorta, gallbladder, kidneys, and pancreas compared to
SwinUnet. The DSC of FSCA-Net reached 79.12%. Due to

TABLE III
COMPARISONS WITH STATE-OF-THE-ART

MODELS ON THE COVID-19 LUNG CT DATASET.

Method DSC↑ HD95↓ LL RL INF
(%, mean) (mm, mean) DSC↑(%)

U-Net 70.32 112.736 85.38 79.51 46.08
Attention U-Net 73.89 91.177 88.40 88.43 44.84

TransUNet 82.69 42.425 95.31 96.13 56.64
SwinUnet 79.75 48.059 92.19 94.74 52.31

Med T 80.55 33.122 94.24 94.78 52.62
UCTransNet 76.68 71.680 90.02 90.93 49.08

Ours 83.63 15.124 96.27 96.81 57.80

the large number of segmentation classes and the limitation
of 2D models to learn information only from the 2D context
of each slice, failing to fully utilize the continuity and context
information of organs in the depth of the volume, the model
cannot achieve optimal performance for segmenting the eight
organs.
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Fig. 7. The visualization results of FSCA-Net and six comparison methods for image segmentation on seven datasets, as well
as the original image and GroundTruth. Incorrect segmentation areas are marked with red boxes.

The first row in Fig. 7 illustrates the visual comparison
of the seven segmentation methods we have enumerated.
Incorrectly segmented regions are marked with red boxes. U-
Net and TransUNet fail to segment the aorta region, while
Attention U-Net, SwinUnet, Med T, and UCTransNet make
errors in the liver and left kidney segmentation. We can
observe that existing methods produce blurred boundaries for
the liver and confuse the stomach, pancreas, spleen, and liver,
whereas our method depicts the boundaries between them
more smoothly.

2) Experiments on the ACDC dataset: Table II presents
the results on the ACDC dataset. Based purely on CNN, the
U-Net method achieves a DSC of 89.42%. SwinUnet and
Med T, based purely on Transformer, achieve DSCs of 90.03%
and 84.96%, respectively. On this dataset, UCTransNet outper-
forms other existing methods. Our FSCA-Net achieves a DSC
of 91.44%, surpassing UCTransNet.

The second row in Fig. 7 illustrates a qualitative comparison
of FSCA-Net with existing segmentation methods on the
ACDC dataset. Incorrectly segmented regions are marked
with red boxes. Existing methods generally perform well in
segmenting the Myo and the LV, but some methods often
mistakenly classify parts of the background as the RV, with

U-Net and UCTransNet showing significant misidentification
of the RV area. In contrast, our proposed method improves the
accuracy of RV segmentation.

In the examples shown, FSCA-Net segments all the organs
more accurately and depicts the boundaries.

3) Experiments on the COVID-19 Lung CT dataset: Re-
sults on the COVID-19 Lung CT dataset are presented in Table
III, demonstrating the significant segmentation performance of
FSCA-Net. Segmenting the infected area is challenging as it
is scattered and surrounded by lung regions, but FSCA-Net
achieves superior performance in this region as well. Specifi-
cally, FSCA-Net improves the DSC score for the segmentation
of infected areas by 1.16% compared to the best-performing
existing method, TransUNet.

The third row in Fig. 7 shows visual comparisons of our
method with other segmentation methods. Incorrectly seg-
mented regions are marked with red boxes. The red and green
regions represent the left and right lungs, respectively, while
the blue indicates the infected area. Through visual observation
of the images, we find that when using U-Net for image seg-
mentation, the background is not correctly identified, leading
to errors, and all existing methods have minor segmentation
omissions in the infected areas of the lungs. Overall, FSCA-

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3406786

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on June 04,2024 at 18:01:22 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

TABLE IV
COMPARISONS WITH STATE-OF-THE-ART

MODELS ON THE HIPPOCAMPUS DATASET.

Method DSC↑ HD95↓ LH RH
(%, mean) (mm, mean) DSC↑(%)

U-Net 70.61 4.930 68.04 73.18
Attention U-Net 75.40 12.913 75.90 74.90

TransUNet 78.74 5.097 78.12 79.37
SwinUnet 79.66 3.381 80.00 79.33

Med T 65.47 19.972 65.60 65.33
UCTransNet 75.65 8.155 76.40 74.90

Ours 88.35 1.916 88.68 88.02

TABLE V
COMPARISONS WITH STATE-OF-THE-ART

MODELS ON LITS DATASET.

Method DSC↑ HD95↓ Liver Tumor
(%, mean) (mm, mean) DSC↑(%)

U-Net 62.99 38.226 91.56 34.44
Attention U-Net 63.32 27.029 91.88 34.77

TransUNet 65.57 32.511 88.03 43.11
SwinUnet 64.72 34.302 91.69 37.74

Med T 58.06 41.500 89.54 26.58
UCTransNet 64.95 24.496 92.90 36.99

Ours 68.54 23.897 93.04 44.04

Net effectively handles the segmentation of small infected
areas and achieves optimal performance in liver segmentation.

In summary, FSCA-Net accurately segments the gallbladder,
kidneys, and pancreas, and also achieves good performance in
the segmentation of aorta, liver, spleen, and stomach.

4) Experiments on the Hippocampus dataset: The results
on the Hippocampus dataset are showcased in Table IV.
Our approach significantly outperforms existing methods in
segmenting the left and right hippocampus, achieving DSC
scores of 88.68% and 88.02%, respectively.

The fourth row in Fig. 7 shows visual comparisons of
FSCA-Net with other segmentation methods. Incorrectly seg-
mented regions are marked with red boxes. Existing methods
produce blurry boundaries for both hippocampus and missing
segmentation regions. For example, TransUNet mistakenly
identifies a small region inside the left hippocampus as the
background.

5) Experiments on the LiTS dataset: According to Table
V, TransUNet achieves an average DSC of 65.57%, demon-
strating significant effectiveness in tumor segmentation. Swin-
Unet, on the other hand, balances liver and tumor segmentation
with an average DSC of 64.72%. Our approach surpasses
TransUNet by 1.52% in average DSC, with the highest DSC
for tumor segmentation reaching 44.04%.

As shown in the visualization in Fig. 7, the comparison
among all methods is presented. Incorrectly segmented regions
are marked with red boxes. U-Net shows instances of notable
mis-segmentation in liver segmentation, while Attention U-Net
and SwinUnet show limited smoothness in liver edge handling.
For tumor segmentation, SwinUnet produces noticeably inac-
curate shapes.

In summary, our method demonstrates superior performance
in both liver and tumor segmentation. However, due to re-
source constraints and inherent limitations of 2D models, there

TABLE VI
COMPARISONS WITH STATE-OF-THE-ART

MODELS ON THE CPCGEA DATASET.

Method DSC↑ HD95↓ Recall↑ Precison↑
(%, mean) (mm, mean) (%, mean) (%, mean)

U-Net 60.79 9.508 65.32 66.50
Attention U-Net 61.92 7.752 64.75 65.37

TransUNet 62.57 7.895 65.14 66.69
SwinUnet 62.35 7.466 68.98 62.51

Med T 60.47 7.284 64.82 66.19
UCTransNet 60.03 13.492 69.10 61.21

Ours 64.27 7.047 69.92 66.93

TABLE VII
COMPARISONS WITH STATE-OF-THE-ART

MODELS ON THE MONUSEG DATASET.

Method DSC↑(%, mean) IoU↑(%, mean)

U-Net 78.46 65.71
Attention U-Net 78.48 65.61

TransUNet 78.04 64.06
SwinUnet 78.48 64.73

Med T 78.48 64.70
UCTransNet 78.25 64.90

Ours 79.82 66.60

remains considerable potential for enhancing tumor segmen-
tation.

6) Experiments on the CPCGEA dataset: To further vali-
date the robustness of the model regarding variations in image
quality, noise, and artifacts, we engage the experiments on this
dataset. Firstly, as indicated in Table VI, it can be observed that
TransUnet achieves the best DSC and Precision metrics among
existing methods, reaching 62.57% and 66.69%, respectively.
Med T exhibits the optimal HD95 metric among existing
methods at 7.284mm. Additionally, UCTransNet achieves the
highest Recall among existing methods, reaching 69.10%.
Subsequently, our method surpasses all comparative methods
across four metrics, notably achieving a DSC of 64.27%. Thus,
our method demonstrates superior segmentation performance
under variations in image quality, noise, and artifacts.

As depicted in the 6th row of Fig. 7, we visually compare
FSCA-Net with six other comparative methods. Incorrectly
segmented regions are marked with red boxes. U-Net, Atten-
tion U-Net, TransUNet, and SwinUnet exhibit significant areas
of under-segmentation, while UCTransNet shows instances
of notable mis-segmentation. Overall, FSCA-Net exhibits the
most superior segmentation performance.

7) Experiments on the MoNuSeg dataset: Considering
that the previous experiments focus on multi-organ/region
segmentation, here we select a dataset for segmenting a single
region with a smaller data size. Through this approach, we
aim to validate that our model is also meaningful for single
organ/region segmentation. Table VII presents the results of
the MoNuSeg dataset. FSCA-Net achieves a DSC of 79.82%
and an IoU of 66.60%, outperforming existing methods.

The seventh row in Fig. 7 visually compares the FSCA-
Net with other segmentation methods. Regions that were
incorrectly segmented are highlighted with red boxes. We
can observe that U-Net does not segment local regions finely
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TABLE VIII
ABLATION EXPERIMENTS ON THE SYNAPSE MULTI-ORGAN SEGMENTATION DATASET.

Method DSC↑(%, mean) HD95↓(mm, mean) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach
DSC↑(%)

Baseline 77.45 36.213 88.67 61.21 81.13 76.01 93.70 59.16 87.76 71.93
+PAT 77.88 31.888 87.75 67.50 81.80 76.60 93.70 58.15 83.80 73.70

+DPCA 77.57 31.068 87.58 64.81 80.98 76.34 93.69 59.18 86.18 71.78
+CBA 77.49 34.038 87.29 64.54 81.04 75.69 93.79 58.77 86.52 72.28

+PAT+DPCA 77.95 30.660 87.62 66.61 83.02 76.52 93.61 57.12 84.91 74.22
+PAT+CAB 78.27 30.621 87.05 66.60 82.60 78.93 93.19 57.50 86.74 73.56

+DPCA+CAB 78.20 29.244 87.38 66.89 82.62 78.69 93.55 58.24 85.58 72.68
+PAT+DPCA+CAB 79.12 29.096 87.91 67.60 83.63 79.06 93.81 59.41 86.89 74.67

TABLE IX
ABLATION EXPERIMENTS ON THE ACDC

DATASET.

Method DSC↑ RV Myo LV
(%, mean) DSC↑(%)

Baseline 89.54 87.73 87.44 93.44
+PAT 90.51 88.65 88.69 94.17

+DPCA 90.65 88.88 88.99 94.10
+CAB 90.78 88.95 89.40 94.00

+PAT+DPCA 91.03 89.21 89.63 94.24
+PAT+CAB 91.06 88.40 90.01 94.78

+DPCA+CAB 90.87 88.77 89.63 94.21
+PAT+DPCA+CAB 91.44 89.32 90.15 94.87

TABLE X
ABLATION EXPERIMENTS ON THE MONUSEG

DATASET.

Method DSC↑(%, mean) IoU↑(%, mean)

Baseline 77.95 64.50
+PAT 78.65 65.04

+DPCA 78.44 65.34
+CAB 78.53 65.66

+PAT+DPCA 79.24 65.84
+PAT+CAB 79.18 65.71

+DPCA+CAB 79.05 65.50
+PAT+DPCA+CAB 79.82 66.60

enough, while some other comparative models may exhibit
over-segmentation. It is noticeable that our FSCA-Net pro-
duced more accurate segmentation results, closely matching
the ground-truth compared to the baseline models.

E. Ablation Studies
Our approach mainly introduces three modules: the Paral-

lel Attention Transformer (PAT) module, the Cross-Attention
Bridge Layer (CAB) module, and the Dual-path Channel
Attention (DPCA) module. Our ablation experiments were
conducted on three datasets.

Regarding the proposed modules displayed in Tables VI,
VII, and VIII, “Baseline + PAT + DPCA + CAB” generally
surpasses all other combinations on all datasets, demonstrating
the effectiveness of this particular combination.

First, when we add any one of the PAT, DPCA, or CAB
modules individually, the segmentation results for various
organs in the ACDC and MoNuSeg datasets are significantly
improved. On the Synapse dataset, the average segmentation
results for eight organs are also enhanced. Next, we adopt

Fig. 8. The visualization results of two types of attention on
the ACDC dataset.

a two-by-two combination approach of the three modules,
resulting in further improved segmentation results on all three
datasets. Finally, our segmentation performance reaches its
best when we use all three modules: PAT, DPCA, and CAB.
Overall, our approach achieves superior performance in all
segmentation results on the ACDC and MoNuSeg datasets.
Additionally, on the Synapse dataset, our method demonstrates
improved segmentation results in six out of eight organs.

The experimental outcomes also underscore the significance
of improving feature extraction capability within the encoder-
decoder framework.

F. Attention Mechanism Visualization

In the designed model, we have utilized two attention-
based modules. We employ attention heatmap visualization to
visually demonstrate the roles of these modules in segmenting
specific regions.

We select the ACDC dataset, specifically for segmenting the
RV cavity, myocardium, and LV cavity, and conduct attention
visualization analysis based on the two attention modules used
in our model: PAT and DPCA.

The visualizations of Fig. 8 clearly demonstrate that includ-
ing the PAT module within the skip connections significantly
enhances the extraction of global contextual information.
However, including PAT in the skip connections may lead to
side effects, such as marking incorrect regions. On the other
hand, the DPCA module is dedicated to filtering the feature
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Fig. 9. The visualization images of attention weight heatmaps
on multiple datasets.

TABLE XI
EXPERIMENT ON DETERMINING THE NUMBER OF

PATS ON THE ACDC DATASET.

Layer DSC↑ RV Myo LV
(%, mean) DSC↑(%)

2 91.07 88.54 89.97 94.70
3 91.04 88.54 89.85 94.75
4 91.44 89.32 90.15 94.87
5 90.93 88.32 89.88 94.58
6 90.99 88.79 89.77 94.41
7 90.84 88.29 89.81 94.42
8 91.16 88.79 89.84 94.85

in the encoder-decoder framework, resulting in fine-grained
optimization of the segmentation boundaries.

G. Discussion

To further validate the experiments and explore the practical
clinical application, we engage in the following series of
discussions:

1) Discussion on the the image characteristics: To visu-
ally demonstrate the performance disparities of the designed
model across various datasets, we utilize attention weight
heatmaps visualization. Based on Fig. 9, it’s evident that on
the Synapse dataset, the designed model accurately captures
the regions of interest, resulting in an optimal segmentation
performance. However, due to the dense distribution among
the eight segmentation labels and minimal differences in image
features, the segmentation performance is affected. On the
ACDC and COVID-19 Lung datasets, distinct differences
in segmentation area features and more dispersed regions
contribute to the model’s excellent segmentation performance.
On the MoNuSeg dataset, despite dense segmentation areas,
higher dataset quality and single segmentation label enable the
designed model to achieve notable segmentation performance.
On the LiTS dataset, the minimal feature differences between
tumor and liver regions can cause attention weights to be
dispersed to background areas, thereby limiting tumor seg-
mentation capabilities. Fig. 9 shows that the designed model

Fig. 10. Accuracy (Dice score) vs. model complexity (parame-
ters and computational complexity) comparison on the ACDC
dataset.

Fig. 11. The average inference time per image for existing
methods and our method.

still effectively extracts the regions of interest, particularly
the tumor regions. On the CPCGEA dataset, significant noise
and poor image quality directly affect the final segmentation
performance, but the designed model still achieves the best
segmentation performance.

Through attention weight heatmap visualizations, we
demonstrate the differences in the segmentation performance
of FSCA-Net across different datasets, providing insights into
its robustness and generalization capabilities.

2) Discussion on the number of PAT: In our skip-connection
design, we propose the PAT module. Choosing the number of
modules in this design becomes essential to extract spatial and
channel-wise features from high and low-level layers. Due to
limited computational resources, we experimentally selected
the number of modules to be linearly varied from 2 to 8.

According to the experimental results presented in Table
XI, our approach attains the most favorable segmentation
performance for the three organs in the ACDC dataset when
employing four layers of concatenation. It should be noted that
our experiments on all seven public datasets are conducted
with 4 PAT modules in series.

3) Discussion on the model complexity and inference time:
In our study, we focus on balancing model performance,
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Fig. 12. The discussion on the selection of batch size.

model complexity, and inference time. Therefore, we engage a
series of experiments where our proposed model is thoroughly
compared against six comparison models.

The results are detailed in Fig. 10, which includes the DSC,
model parameter count, and computational complexity of each
model. Firstly, in terms of DSC scores, our model performs
best in segmenting the three organs within the cardiac region,
indicating significant effectiveness in enhancing segmentation
accuracy. More importantly, not only does our model exhibit
superior performance, but it also has the smallest computa-
tional complexity and fewer parameters.

Additionally, we calculate the inference time of the model,
the results of which are shown in Fig. 11. From the figure,
it can be seen that the inference time of FSCA-Net is signifi-
cantly less than that of Med T and UCTransNet, but is slightly
inferior to some other U-shaped models.

Overall, our method optimizes the model architecture to
effectively balance performance, complexity, and inference
time. This demonstrates its immense potential for clinical
practice.

4) Discussion on the batch size: To discuss the impact of
batch size on our entire training process, we engage some
experiments on the Hippocampus, COVID-19 Lung, LiTS, and
CPCGEA datasets. Due to computational resource constraints,
we only discuss the cases with batch sizes of 4, 8, and 16.

As depicted in Fig. 12, on the Hippocampus dataset, a batch
size of 16 yields the optimal segmentation performance. On
the COVID-19 Lung dataset, the best batch size is 4. Similarly,
on the LiTS dataset, the best segmentation performance is
achieved with a batch size of 16. On the other hand, for
the CPCGEA dataset, a batch size of 8 results in the best
segmentation performance. Furthermore, it is evident that the
choice of batch size directly affects the model training process,
thereby impacting segmentation performance.

5) Discussion on the actual clinical application: Considering
the model’s short inference time, low parameter count, and
minimal computational requirements, its real-world clinical
applications are both promising and diverse. These attributes
enable the model to be effectively integrated into various clin-

ical settings, improving efficiency and patient outcomes. Here
are several ways to discuss its real-world clinical application:

Integration into Clinical Workflow: Given the model’s
short inference time, it can be seamlessly integrated into
existing clinical workflows. For instance, it could be employed
immediately after image acquisition to provide real-time seg-
mentation analysis, thereby expediting the diagnostic process
and enhancing workflow efficiency.

Usability for Medical Practitioners: With its low parame-
ter count and minimal computational requirements, the model
can be deployed on smart devices or cloud servers, ensuring
easy accessibility for medical practitioners. This eliminates the
need for complex hardware or software configurations, allow-
ing medical personnel to swiftly perform image segmentation
and obtain results.

Impact on Diagnostic Accuracy: Despite its low parameter
count, the model has demonstrated proficient performance in
image segmentation tasks. Therefore, its application in clinical
practice holds the potential to improve diagnostic accuracy.
Medical practitioners can use the model’s segmentation results
for more precise lesion detection and localization, improving
diagnosis accuracy and reliability.

In conclusion, leveraging the model’s characteristics, it can
serve as a rapid, efficient, user-friendly, and accurate tool to
provide better support and services in clinical medicine.

V. CONCLUSION

We propose a deep learning network model named FSCA-
Net, designed for fine-grained segmentation of multiple re-
gions. The proposed method improves semantic segmentation
performance by fusing spatial and channel-wise features in
the skip-connection mechanism. Our objective is to bridge
the semantic and resolution gaps between features at different
levels by using more effective feature concatenation methods.
To achieve this, we introduce the dual-path channel attention
module, which guides the channel and spatial dimensions of
Transformer features and facilitates information filtering. This
module serves as a novel feature concatenation component
that replaces the traditional simple concatenation approach.
Additionally, we propose the cross-attention bridge layer
to compensate for the loss of low-level features. FSCA-
Net achieves promising segmentation results on seven public
datasets compared to existing methods. Not only have we
enhanced semantic segmentation performance, but we have
also achieved higher efficiency and compactness through the
combination of U-Net and Transformer.

Although our current approach can achieve high-
performance segmentation while ensuring a small number of
parameters and computational cost, it lacks consideration for
cross-dataset performance. Due to issues such as differences
in data distribution, label formats, and limited data volume
among different datasets, the designed model currently cannot
efficiently perform cross-dataset validation. In future research,
we aim to create a holistic medical image segmentation
model for the entire human body, enhancing both diagnostic
accuracy and treatment efficiency. We look forward to our
research contributing to the advancement of the medical field.
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